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Asymmetric Dark Matter

Maybe the abundances are related!?

74% Dyrk Ener
*  Some mechanism generates DM and =

anti-DM number asymmetry. It may
connect to the baryon asymmetry.

* DM is a Dirac fermion or complex

scalar.
4% Atoms
nNpM QDM MpM Nussinov (1985); Kaplan, Luty, Zurek (2009);
— ~ ]_ — ~J Graesser, Shoemaker,Vecchi (201 1); Bell, Petraki,
nSM QSM mSM Shoemaker,Volkas (201 1)...
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WIMPS vs. ADM

Collider
i \ / WIMPS
Direct * Three different and well-explored
X / \ g foutes to discovery

—>

t Relic density, Indirect

Collider

ADM’ = \ / a
* Production mechanism (hence, the relic | pirect
population) is asymmetric, like the SM / \

LY

* No annihilations leads to accumulation , , ,
Relic density, Ing \ct

Negligible
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Accumulation of ADM

* ADM encounters
SM particles off of
which it may scatter

- Over time, very Mass 1.4 Mg

dense environments ; ; . . ;
will accumulate 1.4 x 10 kg/m density 10 kg/m

many ADM particles

~/ 2 X 10_3 C Vesc ~ 6 C
 Stars are ver
dense, and neyutron Easier to just N_I”Ch more
stars are the pass through likely to be

trapped, and
much harder
to escape!

densest stars
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ADM in the Neutron Star
| : Capture

dCB(T) N § U(T)2 _
Y _\/;nx(’l“>n3(7“)f = (VoxB)

The differential capture rate per unit
volume sets the total number of particles

100 GeV PX
Ny ~ 2.3 x 10* :
X 8 ( mx ) (103 GeV/cm3>

OX B t
2.1 x 10~4° c¢m? 1010 years




ADM in the Neutron Star
Il : Thermalization

dF

= —&npo,v OF

The ADM particle will scatter many
times with SM particles, eventually
attaining thermal equilibrium

my 2 /2.1 x 10~%° cm? 10° K
t ~ 0.054 ( )
th T 100 Gev ( O T

_ oT N\ .. (T 100 GeV\'?
th = 47TGmeX N 105 K T x




ADM in the Neutron Star
lll : Self-Gravitation

SNXmX >
7T7°th

Self-gravity sets in when the density
of ADM particles within the thermal
radius exceeds the baryon density

i (100 GeVN\°? /T \*?
Nself ~ 4.8 X 10 Mx 105 K

Too many particles leads to
gravitational collapse!




The Chandrasekhar Limit

- Fermions: gravity vs. Fermi pressure GNm? | N1/3

R R
| A3 100 GeV \°
@ NLgmom ~ (—’”) ~ 1.8 x 10% ( - )
TN T
. . G Nm? 1
* Bosons: gravity vs. zero point energy E ~ 7 | i

Mo\ > 100 GeV \ *
go}fgn ~ (_ﬂ) ~ 1.5 x 10%* ( - )
T T

This is less than the number for self-gravity!

1
(in passing, note that: M = mx N255om = e
mx
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Cool...

* So we've found that neutron stars are good at
trapping ADM

* Once it becomes self-gravitating it can collapse
to form a black hole

- A few questions remain:
» can collapse happen more quickly?

» what happens after collapse?
* what are the constraints/’
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ADM in the Neutron Star
lV : Condensation

T 100 GeV\ /2
105 K ™mx

ren, ~ 24 cm(

100 GeV> 1/2

rgec >~ 1.5 X 10™° cm < —
X

The Bose-Einstein condensate (BEC)
that forms due to the extreme pressure
is very very dense!

2 3
1 T
Ngpc ~ 1.5 x 103 ( 00 Gev) + 1.0 x 103° ( K)




Black Hole Mass Accretion

dMBH GMBH : dMBH
~ 47\, S
dt " ( V2 ) PBe +< dt >DM

/ 1
aryons ADM T
Hawking
Evaporation
With no BEC, With BEC, ADM term
ADM term negligible. dominates
Critical mass for BH X
to survive in this case: fo s
crit 37 WGQ'OBMi
~ 4. S .
mx < 2.6 x 10° GeV(T/10°K) M, .
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Black Hole Heating

dM GMpn\~” M
de ~ 4\ ( UQBH> PBVs + ( BH)
S DM

/ 1
Fating Eating/;%@ﬂ G* Mgy
baryons ADM T
Hawking

Evaporation

If the thermal energy from evaporation
gets transmitted to....

i) ...the baryons, not i) ..the ADM,the
much happens phase space can be
altered
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Black Hole Timescales

The timescales can obey two
orderings to form a black hole:

IBec < tself < tcha BEC black hole

(typically stronger
for low mass ADM)

tself < tBEC < tCha

“Cha < Tself < IBEC Collapse happens
conventional black hole for a wide range of
masses!

(typically stronger for
high mass ADM)




Constraints from M4

O

Hawking radiation
may be important

AR

initial black hole mass
below critical value

B1620-226
t=2.82x10° Years
T=10"K
p, =10° GeV/icm’
10°10*10° 107 10" 10° 10“102 10(3610“\/05 10° 10" 10° 10° 10"°10""10" Very Strong
) constraints,
but slightly
These regions excluded with uncertain
or without other effects local values
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Constraints from nearby
pulsars
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Discontinuities where total cross-section
saturates with geometrical cross-section of NS
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Conclusions

- ADM has novel phenomenology

* It can accumulate and trigger gravitational
collapse in old neutron stars

* Observations of neutron stars in high density
environments allow us to constrain the
scattering cross-section of the ADM
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